Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.

نویسندگان

  • Bing Sun
  • Lian Tao
  • Yun-Ling Zheng
چکیده

Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of relative quantification of alternatively spliced transcripts using droplet digital PCR

INTRODUCTION For the relative quantification of isoform expression, RT-qPCR has been the gold standard for over a decade. More recently, digital PCR is becoming widely implemented, as it is promised to be more accurate, sensitive and less affected by inhibitors, without the need for standard curves. In this study we evaluated RT-qPCR versus RT-droplet digital PCR (ddPCR) for the relative quanti...

متن کامل

Dual Promoter Vector Construction for Simultaneous Gene Expression Using Spliced Overlap Extension by Polymerase Chain Reaction (SOE-PCR) Technique

There are two different co-expression systems including bicistronic; dual-vector or two-promoter to express two different genes simultaneously and also to study protein-protein interactions. Bicistronic system has disadvantages e.g. compared with two-promoter system. In this paper, a simple method based on spliced overlap extension by polymerase chain reaction (SOE-PCR) technique was demonstrat...

متن کامل

Alternatively spliced adenomatous polyposis coli (APC) gene transcripts that delete exons mutated in attenuated APC.

Reverse transcription-PCR combined with either (a) restriction enzyme digestion and repeat PCR or (b) ligase chain reaction has identified two new alternatively spliced transcripts of the adenomatous polyposis coli (APC) gene. In one of these transcripts exons 1-4 and the first 16 bases of exon 5 are deleted; in the other exons 2-4 and the first 16 bases of 5 are deleted. Both transcripts use a...

متن کامل

Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays.

We present a tunable three-dimensional (3D) self-assembled droplet packing method to achieve high-density micro-reactor arrays for greater imaging efficiency and higher-throughput chemical and biological assays. We demonstrate the capability of this platform's high-density imaging method by performing single molecule quantification using digital polymerase chain reaction, or digital PCR, in mul...

متن کامل

Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without revers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 56 6  شماره 

صفحات  -

تاریخ انتشار 2014